温程璐-九游会登录j9入口

 温程璐-九游会登录j9入口
温程璐 教授;博士生导师

中国农业大学 博士(2009)

研究方向:三维视觉 三维点云处理 智能机器人

所属部门:人工智能系

电子邮件:clwen (at) xmu.edu.cn

个人j9九游会官方网站国际主页:https://asc.xmu.edu.cn/t/wenchenglu

个人简历:

主讲课程:

  • digital image processing(全英文本科生课程)

  • 机器人导论(本科生课程)

  • 工程伦理(研究生课程)


学术兼职:

  • ieee高级会员,ccf会员,acm会员,cnisde激光雷达专委会委员,csig三维视觉专委会委员,福建省人工智能学会理事,ccf智能汽车分会执行委员

  • ieee transactions on intelligent transportation systems, associate editor, 期刊编委

  • ieee geoscience and remote sensing letters, associate editor, 期刊编委

  • ieee tgrs, isprs jprs, ieee tits, cvpr, aaai, iccv, eccv, acm mm, ijcai, etc., 审稿人


在研项目:

  • 国家自然科学基金面上项目,面向城市动态场景三维感知的点云序列弱监督学习,主持,2022-2025年

  • 国家重点研发计划青年科学家项目,多平台多模态点云大数据智能处理关键技术与软件,任务负责人,2022-2024年

  • 国家自然科学基金面上项目,联合可测点云/多视角图像的大规模对象标记数据集生成,主持,2018-2021年

  • 国家自然科学基金青年项目,室内移动三维测图点云数据的多元质量评价与修补,主持,2015-2017年


近期论文:

1. h. wu, c. wen*, s. shi, et al., virtual sparse convolution for multimodal 3d object detection, cvpr, 2023. (ccf a)

2. y. dai, y. lin, x. lin, c. wen*, et al., sloper4d: a scene-aware dataset for global 4d human pose estimation in urban environments, cvpr, 2023. (ccf a)

3. h. wu, c. wen*, w. li, et al., transformation-equivariant 3d object detection for autonomous driving, aaai, 2023. (ccf a)

4. q. li, c. wang, c. wen*, et al., deepsir: deep semantic iterative registration for lidar point clouds, pattern recognition, 2023. (ccf b)

5. y. dai, y. lin, c. wen*, s. shen, et al., hsc4d: human-centered 4d scene capture in large-scale indoor-outdoor space using wearable imus and lidar, cvpr, 2022. (ccf a)

6. s. yu, c. wang, c. wen*, et al., lidar-based localization using universal encoding and memory-aware regression, pattern recognition, 2022. (ccf b)

7. h. wu, j. deng, c. wen*, et al., casa: a cascade attention network for 3d object detection from lidar point clouds, ieee trans. on geoscience and remote sensing, 2022. (ccf b)

8. h. wu, q. li, c. wen*, et al., tracklet proposal network for multi-object tracking on point clouds, ijcai, 2021. (ccf a)

9. h. wu, w. han, c. wen*, 3d multi-object tracking in point clouds based on prediction confidence-guided data association, ieee trans. on intelligent transportation systems, 2021. (ccf b)

10. w. han, c. wen*, c. wang, et al., point2node: correlation learning of dynamic-node for point cloud feature modeling, aaai, oral presentation, 2020. (ccf a)



网站地图